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Abstract—This paper presents a fast and efficient optimization
engine with multi-directional, multi-objective algorithms based
on a robust transistor sizing approach to improve digital circuit
performance. However, such optimization processes are highly
simulator-dependent and computationally expensive tasks. There-
fore, we propose developing machine learning-based reliable
models considering process and operating variations to speed
up the optimization procedure by running them on developed
Residual Neural Network (ResNN) models instead of running
expensive circuit simulations. Results on 22nm Metal Gate High-
K digital cells show a reduction in delay and leakage up to 36.7%
and 18.8%, respectively improving computational efficiency by
several orders.

Index Terms—Yield optimization, Genetic algorithm, Machine
Learning, Leakage power, Propagation delay, CMOS, VLSI

I. INTRODUCTION

For the past few decades, the IC (Integrated Circuit) in-
dustry has reinforced the electronic industry in designing
and developing low-power, high-speed, complex, and compact
devices at a reduced cost. The down-scaling of transistors
is one of the phenomenal factors contributing to this de-
velopment [1]. However, down-scaling to nanometer regime
concerns increased static/leakage power dissipation and circuit
sensitivity to process variations in manufacturing, challenging
state-of-the-art circuit reliability [2]. The inter-die and intra-
die variations in a chip are magnifying beyond the 45nm
technology node, causing deviations in electrical character-
istics of transistors manifested due to physical imperfections
during manufacturing, leading to circuit performance deviation
affecting the chip yield. The fluctuations in supply voltage
and operating temperatures combined with process variations
further deviate circuit performance from expected, increasing
the threat of functional failures and timing mismatch. The
efficient design of an IC confides in the circuit performance
optimization in terms of power dissipation, operating speeds,
and area. Therefore, PVT-aware circuit optimization with high
yield has therefore became an interesting and urgent field of
research in recent times.

Under this perception, we propose a PVT-aware multi-
objective mathematical optimization engine based on Genetic
Algorithm (GA) proficient in exploring the entire design space
to find the optimal sizing of all devices in the standard cells
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to maximize the yield w.r.t power and speed specifications.
Many experts have proposed algorithm-based optimization at
various levels in the literature. However, such optimizations
are simulation-dependent and computationally expensive tasks.
At present, the speed up in analysis is one of the critical
requirements of IC manufacturing with the highly demanding
time to market scenarios on par with yield enhancement. The
problem of improved speed of execution/runtime is possible
with incorporating efficient Machine Learning (ML) tech-
niques for circuit analysis and/or optimization. The novelty
of this work is in assimilating the cutting-edge optimization
algorithms running over the deep Residual Neural Network
(ResNN) to improve the computational speed by several orders
over simulator-dependent applications.

II. PREVIOUS WORKS

Many research groups and scientists have addressed the
reliability optimization of VLSI circuits through algorithmic-
based transistor sizing. Beg et al. [3] proposed an automatic
optimized transistor sizing method in a feedback control
system based on CMOS logic gates with small and large
fan-in. Gate-level optimization approaches were mentioned
in [4], [5]. Here, all transistors in a given logic gate are
scaled by the same factor, and such top-down approaches are
deeply circuit-specific, becoming highly complex for larger
circuits. This paper addresses this problem with a GA-based
bottom-up approach that estimates optimized transistor sizing
in each standard cell searching across PVT-aware design
space. Transistor-level leakage optimization with critical path
delay as bound is proposed in [6]–[11]. In [6], Gupta et al.
considered PVT variations for leakage optimization but only
for corner cases. The paper optimizes critical path delay and
power keeping bounds on both w.r.t nominal values. Abbas
et al. proposed yield optimization of CMOS standard cells
through transistor sizing at 40nm low-power (LP) technology
in [8], [9]. Swarm Intelligence, Spider Monkey Optimization
(SMO), are proposed in [10] for leakage optimization of 45nm
LP applications. Neighborhood Cultivation Genetic Algorithm
(NCGA) and Glowworm swarm optimization (GSO) are pro-
posed in [11] for optimization of critical path delay with aver-
age leakage in bound for high performance (HP) applications
and leakage power with critical path delay in bound for LP
applications, considering all the PVT variations and aging ef-



fects at 22nm MGK node. However, these works are dependent
on license-dependent simulators (Synopsis-HSPICE, Mentor
Graphics-ELDO, Cadence-Virtuoso and so on) with extensive
computational time. Our work aims at providing substantial
power-delay optimization at a significantly faster rate through
machine-learning-based surrogate modeling.

III. THE PROPOSED METHODOLOGY
Process variations and operating variations can combine

at lower technology nodes beyond 45nm to considerably
differentiate the actual design from the intended design. The
performance of the design can vary and be lower than the
expected one. Similarly, the chip power can vary significantly
higher than the nominal values due to the exponential de-
pendence between process/ device parameters and transistor
leakage. This translates into a reduced parametric yield and
hence limits the number of shippable products. Therefore, the
motivation for this work is to find an efficient surrogate multi-
objective optimization engine, which could provide the final
circuit sizing (W/L of all the transistors in the circuit under
test) and yield optimization of the targeted circuits, which
are robust enough against all variations mentioned above and
fully functional as long as a circuit is in the giving operating
conditions. The proposed ResNN running over optimization
will improve the speed of the execution and be highly accurate.

Fig. 1. The proposed PVT aware Pareto-optimal transistor sizing methodology

A. Modelling Delays and Leakages

The proposed methodology is as shown in Fig 1. The
training data for the deep ResNN is generated as a vector
of random values from the Gaussian distribution of each
process parameter with 3σ variations in CMOS standard
cells at 22nm High-K MGK through Predictive Technology
Models (PTM) [12], [13], Xp = [Xp,1Xp,2Xp,3...Xp,k]

T ϵ
Rk

xp. 10 process parameters (PMOS and NMOS) - Channel
Length, Transistor Width, Physical and Electrical equivalent of
oxide thickness, nominal gate oxide thickness, Source/Drain
junction depth, Channel doping concentration are considered
in this work [14]. With these statistical distributions, random
samples of temperature ranging from −55◦C to 125◦C and
supply voltage with a ±10% deviation from the nominal value
(1.0V) are also included Xr = [Xr,1Xr,2]

T ϵ Rxr (operating

Fig. 2. A template of the neural network used to model delays and leakages
given the dimensions and PVT values. Here, the value of network parameters
used are block size = 3 and num blocks = 2.

variations). Design parameters - Channel length and width of
each transistor in a cell (L and W respectively) are also varied
in random within the bounds ([22nm − 33nm] for L and
[44nm − 440nm] for W). Delay dependency on capacitive
load is modeled as per [15]. Leakage power and propagation
delay estimations of CMOS cells with PVT (Process including
design parameters, supply voltage, temperature) variations are
carried through HSPICE Monte-Carlo simulations.

In the next stage, the simulation standard cell database
is given to train a machine learning model (ResNN) with
residual blocks to predict delay and leakage values accurately
for a given PVT variation. Further, genetic algorithm based
optimization engine is built over ResNN to find the Pareto-
optimal point with minimum delays and leakages by adjusting
the gate dimensions (L and W of each transistor). Leakage and
delay estimations for optimized gate dimensions are performed
across the PVT to verify the nominal bounds (Nominal oper-
ating conditions (NOC) as Temperature = 25◦C and Supply
Voltage = 1.0V). The performance estimations were carried
out on all the standard cells namely, AND2, AND3, NOR2,
NOR3, NAND2, NAND3, XOR2 and FA.

The proposed model is capable of modeling more pro-
cess parameters without increasing the modeling complexity.
Abreast, it acts as a black box for modeling any technology
node, including FinFETs.

B. Training the ResNN model

A surrogate model for PVT-aware leakage and delay es-
timation is developed employing residual neural networks
(ResNN). ResNN is inspired by ResNet [16]. It has been
shown that deeper networks perform better than their shallow
counterparts to approximate complex functions, often resulting
in low error values. Nevertheless, simply increasing the depth
of a simple neural network results in failure to converge
in many tasks due to the problem of vanishing gradients.
However, our proposed ResNN model solves the vanishing
gradients problem as the network learns the residuals rather
than the output directly. Therefore, we chose ResNN to model
the leakages and delays across the PVT variations. Let x repre-
sent the input parameters, f represent the learned function and
y represent the output parameters. Then in residual networks,
the output and gradients are yielded by

y = f(x) + x =⇒ dy
dx = df(x)

dx + 1



Here, f(x) = y − x becomes a function to learn the residual.
This makes the flow of gradient easier, thereby increasing the
learning speed and accuracy.

We model the delays and leakages for each gate separately.
The proposed ResNN architecture is demonstrated in Fig. 2.
The network takes in the input parameters (PVT variations and
gate dimensions) in the first stage. The head layer, which is a
linear layer, projects this input to a lower or higher dimension,
depending on the task. This projected input is then further
sent to the body of the network which contains the residual
connections. Finally, the tail of the network projects the vector
from the body to the requisite delay or leakage dimensions.

The body of our network contains a series of residual
layers - stacked linear and ReLU layers. We use two hyper
parameters to tune our network for each gate,
(1) block size - the size of the residual block or number of
layers through which a skip connection is made and
(2) num blocks - the number of blocks that a network has,
which is the same as the number of skip connections. In Fig. 2,
the block size is kept at three with each skip connection con-
sisting of 3 stacked Linear + ReLU blocks, and num blocks is
two with the network containing 2 skip connections in total.
We used PyTorch to implement the proposed ResNN. Each
gate level prediction model was trained for approximately
1000 epochs on a single RTX 2080 Ti GPU using Adam
optimizer with learning rate set to 0.001.

C. Genetic Algorithm

The Genetic Algorithm (GA) is an evolutionary algorithm
wherein random adjustments are made to existing solutions to
produce more optimal ones. We used GA to find the optimal
gate dimensions providing the lowest leakages and delays
using the predictions from our trained ResNN model. We
optimized transistor sizing (L and W values) in each standard
cell while keeping all the other PVT at nominal (temperature
- 25◦C, supply voltage - 1.0V , process - nominal). This was
done to ensure that the algorithm has a stable optimization goal
and can find the best L and W values such that a consistent
reduction in both the delay and leakage values can be achieved.
A multi-objective fitness function was used to find the Pareto-
optimal point, simultaneously reducing delays and leakages.

The sum of all delay and leakage combinations represents
delay and leakage, respectively, in the fitness function. A
population size of 100 was chosen, and the top 20% indi-
viduals (Elite Population) from the previous generation were
carried forward to the next one. The rest 80% were subjected
to random cross-overs and mutations, allowing incremental
adjustments. The genetic algorithm was allowed to run till ten
consecutive generations failed to improve the Pareto-optimal
solution.

D. Performance verification across PVT variations

All the PVT were kept constant while running the ge-
netic algorithm. Therefore, to ensure that the obtained gate
dimensions are PVT-aware, we compared them with the initial
sizing gate dimensions (estimated at nominal PVT) over 1000

TABLE I
TRAINED RESNN MODEL PERFORMANCES FOR DELAY AND LEAKAGE ON
THE HOLD OUT TEST SET. MSE FOR DELAY IS OF THE ORDER 10−24 AND

FOR LEAKAGE IS 10−16 .

Gate
Delay Leakage

R2 MSE MAPE R2 MSE MAPE
AND2 0.998 0.615 1.786 0.997 9.194 1.504
AND3 0.997 1.220 2.488 0.998 9.215 1.222
NOR2 0.998 1.304 3.934 0.999 0.705 0.695
NOR3 0.998 2.121 3.365 0.999 0.620 0.583

NAND2 0.999 0.506 1.923 0.998 4.198 1.736
NAND3 0.998 0.438 1.983 0.999 10.246 0.669
XOR2 0.993 0.918 3.832 0.999 0.358 0.221

FA 0.913 233.596 5.285 0.991 275.399 2.397

TABLE II
PERFORMANCE VERIFICATION OF OPTIMAL SIZING OVER PVT

VARIATIONS

Gate
Delay Leakage

Average Maximum Average Maximum
AND2 3.55% 17.60% 6.33% 7.63%
AND3 4.59% 19.10%. 7.66% 7.76%
NOR2 3.28% 17.51% 2.53% 2.94%
NOR3 3.96% 17.44% 7.18% 13.84%

NAND2 2.90% 13.52% 1.16% 4.77%
NAND3 8.63% 32.26% 6.36% 8.91%
XOR2 6.34% 17.38% 0.97% 1.38%

FA 31.30% 36.74% 7.22% 18.75%

iterations. The temperature and voltage values were randomly
drawn from a uniform distribution with specified ranges in
each iteration, whereas process parameters variations were
sampled from a Gaussian with ±3σ variance. The delay and
leakage values for initial sizing and optimized sizing were then
compared. A detailed description of results and observations
are mentioned in the following section.

IV. RESULTS

The performance of the proposed ResNN to approximate
delays and leakages is measured through three evaluation
metrics - coefficient of determination (R2), mean squared
error (MSE) and mean absolute percentage error (MAPE).
The modeling results are tabulated in Table I. We were able
to model all leakages and delays with high R2 scores upto
0.99. The MSE for delay was of the order of magnitude 10−24

and for delay was of the order 10−16. MAPE scores ranged
between 1.786% and 5.285% for delays and between 0.221%
and 2.397% for leakages, with the highest errors occurring
for Full Adder due to its complex transistor network with 28
transistors. Increased training data would further reduce the
errors in such complex cells. After training the ResNN
model, genetic algorithm based multi-objective optimization
was performed. The objective was to reduce both delay and
leakage simultaneously for HP 22nm MGK standard cells.
The percentage reduction achieved for delays and leakages
in each cell are shown in Fig 3. The convergence of the



Fig. 3. % Reduction in leakage and delay through optimized transistor sizing

Fig. 4. The convergence of Genetic algorithm with iterations (generations)
resulting in reduced delay and leakage for the Full Adder gate.

genetic algorithm with iterations, resulting in reduced delay
and leakage for the Full Adder circuit is plotted in Fig. 4.The
delay at average PVT values for optimal sizing was 31.33%
reduced compared to initial sizing, and the leakage reduced
by 12.13%.

Once the optimal sizing was achieved, performance veri-
fication was performed over PVT variations. Again optimal
sizing delay and leakage were compared with their initial
sizing counterparts and the results are listed in Table II.
The average reduction in delay for Full Adder was 31.30%
whereas the maximum was 36.74%. Similarly, the average
reduction in leakage for FA was 7.22% with the maximum
being 18.75%. The results indeed prove that the optimal sizing
gate dimensions are robust to PVT variations, consistently
performing better than the initial sizing. These robust standard
cells can be further adapted in digital circuits resulting in PVT-
aware optimization. Table III compares our work with previous
works. The robustness of the proposed work is evident by
reduction of leakage and delay for HP circuits at the same
time as shown in table III with very minimal computational
time compared to other proposed techniques.

V. CONCLUSION

In this paper we present a fast and efficient pipeline to
achieve PVT aware performance improvement in digital cir-
cuits. The speedup achieved is attributed to our use of the
trained ResNN model which can return delay and leakage

TABLE III
COMPARISON OF OUR WORK WITH PREVIOUS METHODS

[6] [10] [11] [11] Our
work

Algorithm ABC,
PCO

SMO GSO,
NCGA

GSO,
NCGA

GA

Technology
node

45nm
LP ptm

22nm/
45nm

LP ptm

22nm
LP ptm

22nm
HP ptm

22nm
HP ptm

% optimi.
leakage

45 58/64 50 NA 19

% optimi.
delay

-5.1 NA NA 43 37

Simulator HSPICE HSPICE HSPICE HSPICE ResNN

Time
(min)

∼90 ∼30 ∼30 ∼300 ∼2

values in a fraction of a second as a proxy for the time
consuming HSPICE simulations. Genetic algorithm further
optimizes the gate dimensions to return robust PVT aware
Pareto-optimal transistor sizing.
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