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ABSTRACT

Automated generation and (user) authoring of realistic vir-
tual terrain is most sought for by the multimedia applications
like VR models and gaming. The most common representa-
tion adopted for terrain is Digital Elevation Model (DEM).
In this paper, we propose a novel realistic terrain authoring
framework powered by a combination of VAE and generative
conditional GAN model. Our framework is an example-based
method that attempts to overcome the limitations of existing
methods by learning a latent space from a real-world terrain
dataset. This latent space allows us to generate multiple vari-
ants of terrain from a single input as well as interpolate be-
tween terrains while keeping the generated terrains close to
real-world data distribution. We also developed an interactive
tool that lets the user generate diverse terrains with minimal
inputs. We perform a thorough qualitative and quantitative
analysis and provide a comparison with other SOTA methods.

Index Terms— Terrain Authoring, GAN, VAE

1. INTRODUCTION

Terrain modelling aims to create a digital representation of
the real-world topography and is useful in both scientific ap-
plications of land surface processes like flooding, soil erosion,
as well as virtual terrain rendering in graphics and computer
vision applications. It is also most sought for by the multime-
dia applications like Virtual Reality (VR) models and gam-
ing. The real-world terrains undergo a range of natural trans-
formations such as erosion, weathering, and landslides over
the years, leading to the formation of complex topographies
such as hills, mountain ranges, canyons, plateaus, and plains.
This makes the terrain generation and authoring a challeng-
ing task. Existing terrain authoring and modelling techniques
have addressed some of these and can be broadly categorised
as procedural modelling, simulation method, and example-
based methods (refer to [1] for a detailed survey).

Recent advancements in deep learning have enabled us
to learn diverse terrain features for tasks like terrain ampli-
fication [2], modifications [3], etc. In the context of deep
learning-based automated terrain authoring, the literature is
very sparse. One of the most relevant example-based terrain
authoring methods referred to in this work as TSynthNet [4],

Fig. 1. Generation of multiple variants of terrain from a single
input topographic map sketch.

trains a conditional Generative Adversarial Network (cGAN)
on a large set of real-world terrain data to generate realistic
virtual terrains from hand-drawn user inputs. However, they
provide limited user control and generate a single terrain for
a given input. Additionally, their method allows the use of
either drawing of level-sets or ridge/valley strokes (with al-
titude cues). However, these two representations are com-
plementary and jointly provide richer information for terrain
authoring tasks.

In this paper, we propose a novel realistic terrain au-
thoring framework powered by a combination of Variational
Auto-encoder (VAE) [5], and conditional GAN model. Our
framework attempt to overcome the limitations of TSynthNet
by learning a latent space from a real-world terrain dataset.
This latent space allows us to generate multiple variants of
terrain from a single input (as depicted in Figure 1) as well
as interpolate between terrains while keeping the generated
terrains close to real-world data distribution. We also de-
sign a novel VAE loss function to exploit sparse topographic
features like ridge/valley lines. Finally, we developed an
interactive tool that lets the user model diverse terrains with
minimal inputs. We perform a thorough qualitative and quan-
titative analysis and provide a comparison with TSynthNet to
show the superiority of our method over SOTA methods.

2. METHODOLOGY

We propose a two-stage framework to learn the topograph-
ical structure of real-world terrains from existing datasets



Fig. 2. The architecture of the proposed two-stage deep generative framework.

and generate plausible DEM from input sketches that can
be thought of as topographic maps primarily consisting of
DEM level-sets and ridge/valley lines representing under-
lying abstract topological features of the terrain. Learning
such a latent space enables two key use-cases of the proposed
method, namely, automated generation of multiple variants
of terrain from a single user input sketch and interpolating
between two terrains while keeping the generated virtual
terrains closer to a real-world dataset consisting of realistic
topographical features. Figure 2 provides an overview of the
proposed two-stage framework.

2.1. Stage 1: Latent Space Learning

In the first stage, we aim to learn a generative latent space for
topographic maps using a Variational Auto-encoder (VAE)
model from a real-world terrain dataset. We extract ground
truth topographic maps from real-world terrain data (see Sec-
tion 3.1) and autoregress using VAE to learn the latent space.
Let Tinp be our (hand-drawn) input sketches representing a
rough topographic map. VAE learns to approximate a distri-
bution q(z) and learns the parameters µ and σ, from which the
latent vector z is sampled using the re-parameterization trick
as z = µ+σ ∗ ϵ, where ϵ is sampled from a Standard Normal
distribution. This sampled vector is fed to the decoder, which
predicts Trec, that is the reconstruction of original input Tinp.

We propose a novel auto-regressive reconstruction loss
Lrecons between VAE input Tinp and output Trec by modi-
fying the traditional Binary Cross Entropy (BCE) loss to em-
phasize the ridge/valley lines in the topographic map. We pro-
pose to give higher weightage to the loss on red and blue chan-
nels to give more importance to ridge and valley lines/strokes
in the topographic map sketches. Additionally, a traditional
KL divergence loss LKL ensure that the probability distribu-
tion of latent vector z follows a Standard Normal distribution.
Thus, the final VAE loss LV AE is a combination of recon-
struction Lrecons and KL divergence loss LKL .

LV AE = Lrecons + γ ∗ LKL (1)

The γ parameter in Eq.1 is the weighting of the latent loss
LKL which is set to 0.65.

2.2. Stage 2: DEM Generation

The second stage consists of a conditional Generative Adver-
sarial Network (cGAN) (Pix2pix [6]) model that generates
plausible DEM output. This stage aims to generate the DEM
given user topographic map sketch or, in our case, generated
sketch from the previous stage.

The overall network is trained such that both generator G
and discriminator D reach a Nash equilibrium by playing a
two-player minimax game while optimizing the value func-
tions V (G,D)[6]. We use L1 loss for reconstruction from the
generator, i.e., L1(G). So the final loss for cGAN training is
given in Eq. 2.

L = m
G
in m

D
ax [V (D,G) + L1(G)] (2)

3. EXPERIMENT DETAILS

3.1. Dataset

We use a popular DEM dataset used by other relevant works
in the literature, e.g., [7, 8] which is part of DEMs of moun-
tain ranges named Pyrenees [9] and Tyrol [10], respectively.
DEM patches with a resolution of 2m/pixel have been used
as ground truth elevation maps. Original DEM tiles were
split into 200x200 pixels. We randomly sample 3000 image
patches for training and 878 image patches for testing. More
details about the dataset can be referred from [8]. We prepare
the training dataset by extracting the topographic map input
sketches as RGB images from DEMs. Here the Green chan-
nel is dedicated to representing the elevation in the form of 4
level-sets while the Red(/Orange) and Blue channels are used
to represent ridge and valley lines, respectively.

3.2. Implementation Details

Our VAE model is a 12 layer network with 6 layers in the en-
coder and 6 layers in the decoder. The latent space dimension



Fig. 3. Terrain interpolation results for varying α parameters.

is set to 128. All the layers consist of a 3x3 convolution with a
stride of 2 and padding of 1, followed by Batch Normalization
and using Leaky ReLU non-linearity. Adam optimizer was
used to update the parameters with a learning rate of 0.001
and an exponential scheduler with gamma set to 0.95 while
training the VAE.

Our conditional GAN generator is a U-net inspired
Pix2pix architecture [6]. This model was trained using Adam
optimizer with a learning rate of 0.0002, β1 set to 0.5 and
β2 as 0.999 for both Generator and Discriminator. All our
experiments were performed on a single Nvidia GTX 1080Ti.

3.3. Results

We provide quantitative evaluation results in Table 3.4. We
can observe that we obtained superior performance with
RMSE of 4.743 and PSNR of 34.189 from our model
(VAE+cGAN) and beat the SOTA TSynthNet. We also
demonstrate the results with the Baseline model (i.e., single-
stage VAE based DEM generation) also performs inferior
to our model, justifying need for a two-stage framework.
Figure 4 shows the qualitative results where the first col-
umn shows the input and the VAE reconstructed topographic
maps. The second column gives a comparison between the
ground truth and generated DEMs. The last column shows
the 3D rendering of these DEMs overlaid with the associated
satellite image.

We also provide a qualitative comparison of our method
with TSynthNet in Figure 5. The red circles depict the region
where TSynthNet deviates from ground truth terrain while
our method (green circles) stick closer to the ground truth.
Additionally, our method also enables terrain interpolation
and variant generation using the learnt VAE latent space.

Generating Terrain Variants: We utilise the latent space
created by VAE to generate different samples from the same
input. Different terrains generated from the latent space
encoding of the same input topographic map are shown in

Figure 1. We can observe the generated terrains have realistic
but slightly different topographical features from that of input
terrain. This provides the user with the flexibility to generate
multiple terrain DEMs and use them for large scale genera-
tion of virtual terrain maps.

Terrain Interpolation: The latent space can also be used
for automated fusion of topographic features across two
terrains. Given two input DEMs we extract associated topo-
graphic map sketches and generate a new terrain by linear
interpolation of the respective feature embedding (z1 and z2)
in the VAE latent space. More specifically, we combine them
using the formula z = α ∗ z1 + (1−α) ∗ z2 while generating
respective novel DEM using our framework. Figure 3 shows
an example interpolation of two input terrains in the latent
space for different values of α parameter.

3.4. User Study

Fig. 4. Rendering of generated and ground truth terrains.

We performed a detailed user study involving 6 users. We
presented users with a set of generated and ground truth ter-
rain pairs overlaid with satellite images. The users were un-
able to decisively differentiate the generated and ground truth
terrains and choose the real terrain only 50% of the time. To-



Fig. 5. Qualitative comparison with TSynthNet [4].

tal 83.3% of the users agreed that the terrains generated are
very realistic, while 16.7% said that it is fairly realistic.

In the second experiment, we provide the user with a sim-
ple interface to draw input sketches. We provide the option to
vary brush thickness so that the dense level-sets can be drawn
with only a few strokes. The user interface and the DEM gen-
erated for a hand draw user input is shown in Figure 6. The
input can also be interactively edited to get desired output.
We asked the users several questions regarding the interface
and the application. 33.3% users said that the input is very
intuitive while 66.7% users agreed that it is fairly intuitive.
50% of the user strongly agree that the generated terrain fol-
low the input sketches, while the remaining 50% fairly agree.
All the users strongly agree that the system is fast and reac-
tive. When asked to rate on a scale of 1 to 5, on how easy it
was to express one’s intent, 50% of the users gave a rating of
5, 16.7% gave a rating of 3, and 33.3% gave a rating of 2. We
observed that the users were able to generate DEMs with ease
after a couple of attempts.

Method RMSE ↓ PSNR ↑
TSynthNet [4] 5.391 31.875
Baseline (VAE) 9.229 7.322
Our model (VAE+cGAN) 4.743 34.189

Table 1. Comparison with baseline and TSynthNet [4].

4. CONCLUSION

We proposed a novel realistic terrain authoring framework
powered by a combination of VAE and conditional GAN
model. Our framework learns a generative latent space from
real world terrain dataset. This latent space allows us to gen-
erate multiple variants of terrain from a single input as well
as interpolate between terrains, while keeping the generated
terrains close to real world data distribution. While a prelim-
inary interactive tool has been developed and used here, we
further intend to provide user control to generate the terrain
variants and interpolated terrains. The thorough qualitative
and quantitative analysis and comparison with other SOTA
methods support the superior outcome of our approach.

Fig. 6. The UI developed for user study.
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