
Automated Tree Generation Using Grammar & Particle System
Aryamaan Jain

IIIT
Hyderabad, India

aryamaan.jain@research.iiit.ac.in

Jyoti Sunkara
IIIT

Hyderabad, India
jyoti.sunkara@students.iiit.ac.in

Ishaan Shah
IIIT

Hyderabad, India
ishaan.shah@research.iiit.ac.in

Avinash Sharma
IIIT

Hyderabad, India
asharma@iiit.ac.in

K S Rajan
IIIT

Hyderabad, India
rajan@iiit.ac.in

Figure 1: A forest rendered using the proposed model.

ABSTRACT
Trees are an integral part of many outdoor scenes and are rendered
in a wide variety of computer applications like computer games,
movies, simulations, architectural models, AR and VR. This has led
to increasing demand for realistic, intuitive, lightweight and easy to
produce computer-generated trees. The current approaches at 3D
tree generation using a library of trees lack variations in structure
and are repetitive. This paper presents an extended grammar-based
automated solution for 3D tree generation that can model a wide
range of species, both Western and Indian. For the foliage, we adopt
a particle system approach that models the leaf, its size, orientation
and changes. The proposed solution additionally allows control

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICVGIP’21, December 2021, Jodhpur, India
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7596-2.
https://doi.org/10.1145/3490035.3490285

for individual trees, thus modelling the tree growth variations,
changes in foliage across seasons, and leaf structure. This enables
the generation of virtual forests with different tree compositions.
In addition, a Blender add-on has been developed for use and will
be released.

CCS CONCEPTS
• Computing methodologies→ Shape modeling; • Theory of
computation → Grammars and context-free languages.

KEYWORDS
Grammar based tree generation, tree modelling, shape grammar

ACM Reference Format:
Aryamaan Jain, Jyoti Sunkara, Ishaan Shah, Avinash Sharma, and K S Rajan.
2021. Automated Tree Generation Using Grammar & Particle System. In
Proceedings of 12th Indian Conference on Computer Vision, Graphics and Image
Processing (ICVGIP’21), Chetan Arora, Parag Chaudhuri, and Subhransu
Maji (Eds.). ACM, New York, NY, USA, Article 28, 9 pages. https://doi.org/
10.1145/3490035.3490285

https://doi.org/10.1145/3490035.3490285
https://doi.org/10.1145/3490035.3490285
https://doi.org/10.1145/3490035.3490285


ICVGIP’21, December 2021, Jodhpur, India A.Jain et al.

Figure 2: Banyan tree generated by our method.

1 INTRODUCTION
Virtual world generation is an important goal for computer graph-
ics applications aiming at realistic experience for gaming or virtual
reality audience. Modelling realistic Flora (plant life) is an impor-
tant aspect of generating outdoor virtual scenes that are abundant
in graphics applications. Traditionally, a set of 3D tree models de-
signed by expert artists are repeatedly used to populate a virtual
forest scene. This approach suffers from a lack of variation in tree
structures, as observed in real world as the same tree models are
being replicated. Hence, this approach fails to scale while generat-
ing virtual scenes with a large number of trees, making the view
monotonous and repetitive. Thus, an automated approach to gener-
ating multiple trees of varying structures and appearances become
important. This is a challenging task that involves modelling a large
number of plant species at multiple growth stages and in different
environmental conditions like lighting and wind flows.

Interestingly, trees exist as self-similar structures or fractals,
where each stem is very similar to its parent stem with subtle
changes in shape and width. This self-similarity can be modelled
using recursive grammar and the variation in structure is further
modelled using geometric specifications. Thus, each stem can be
modelled as some geometric transformation relative to its parent.
Examples of such geometric transformations are scaling where
child is smaller than its parent, rotation where child is present at
some angle relative to its parent, etc. These observations were used
by [7] in the popular L-system model to generate trees. [16] later
extended earlier work to make the interpretation of grammar easier.
However, they used global geometry parameters, which made it
difficult to model trees like Pine that has a lot of local geometric
variations.

In this paper, we propose to extend the L-system grammar-based
automation solution for 3D tree generation that overcomes the
limitation of existing methods and generalize to a large variety of
tree species with varying topologies like Banyan, Mango, Pine or
Palm trees. The proposed method can also be used to model related
vegetation such as flowers, shrubs or grasses like bamboo. Our
method uses stochastic rules and can therefore produce structural

variations from the same set of rules. More importantly, the pro-
posed method overcomes the limitations of previous methods [16]
by proposing to extend the geometric variations locally instead of
using global parameters. For modelling foliage, we have adopted
the particle system approach. This allows to model foliage unique
to each tree in terms of leaf type and variations based on season,
height and orientation. Subsequently, we perform texture mapping
to give a realistic appearance to both stem and leaves.

Figure 1 shows the forest scene generated by our method where
we can observe the variations within multiple instances of the same
species and differences between similar species consisting Pine,
Aspen and Fir. It is important to note that the proposed method is
intuitive and easy to understand and thus a novice user can also
easily understand and edit the grammar and geometric parameters
to produce trees of their specification. We also intend to release a
blender plugin implementation of our method. Additionally, the
majority of the existing datasets and automation based tree genera-
tion methods have focused on western tree species. We aimed at
developing a library of trees focused on Indian subcontinent (e.g.,
Banyan Tree shown in Figure 2).

2 LITERATURE SURVEY
There exist many classes of methods to model trees. Some of the
classes are parametric methods, image-based methods, modelling
through 3D reconstruction, learning-based methods, grammar-
based methods, etc.

Parametric methods are often much harder to understand and
work with. Weber and Penn [19] introduced a system to model
trees using a parametric approach. Their method is implemented
in blender as a famous plugin Sapling Tree Gen. [19] also proposed
additional use cases in their work such as pruning of trees, wind
sway, vertical attraction and tropism in trees, etc.

Image-based modelling techniques [4, 9, 18] are used to model
the most realistic trees but cannot fit many use cases because of lack
of scalability. Some methods such as [13] lie at an intersection of
image based approaches and grammar based approaches to model
trees.

[18] proposed a model using an image-based approach. Their
method used structure from motion and other post-processing tech-
niques to model trees. Other methods exist such as single image
approaches [4] and multiple image approaches [12], [9]. Methods of
3D reconstruction such as [20] use an exemplar database consisting
of real trees reconstructed from scanned 3D data. This approach
similarly lacks scalability due to the difficulty in the acquisition of
data. Additionally, in use cases like modelling forests, these meth-
ods will not work because a single set of 20 to 30 images produces
a single tree and these models lack stochasticity to produce varia-
tions in those trees. Producing a forest may require a big database
of images and computational needs can be too expensive. More
importantly, the stem structure information might be incomplete
due to occlusion of leaves and hence it is not easy to animate such
reconstructed trees.

Learning-based methods have been proposed to model trees. One
such strategy is inverse procedural modelling [21], [11], [15], [14]
in which the parameters of grammar-based models or parametric
models are estimated given the data such as tree models. Other



Automated Tree Generation Using Grammar & Particle System ICVGIP’21, December 2021, Jodhpur, India

learning-based approaches such as [2] take images as input but
mainly focus on 2D trees, though they have a limited extension
to 3D. Further work on Interactive procedural modelling like [8]
provided for manual interaction for the 3D artist reducing their
design process. Whereas [3], [5] optimise procedural modelling
approaches at scale to efficiently generate forest for virtual world
creation at reduced time and memory requirements. On the other
hand, [6] presented a visually optimised method to make tree gen-
eration and rendering more suitable for applications in VR/AR.

Grammar-based approaches, such as the proposed work is based
on the interpretation of the grammar provided by the user. Different
methods of interpretation vary the expressibility and the number
of species that can be modelled. L-system and its extensions [7]
are popular grammar-based method to model trees. In [7], the
grammar is first expanded and then interpreted to give results.
Another grammar-based approach was proposed by [16]. Their
model is easy for a user to understand thereby giving the user
bigger flexibility to model trees but is not able to model a wide
variety of trees. The limitation on the variety of trees is because all
of their geometric parameters are set globally, i.e., it is the same for
all types of stems. This makes it harder to model local variations
present in trees. The proposed model overcomes this limitation by
allowing the user to specify local variations in the tree structure.

3 TREE GENERATION
The tree generation primarily requires modelling the structure
of the tree which posses self-similar structures, albeit with large
variation in size/shape within same and across various species.
Additionally, the foliage is also a key component in tree modelling
and poses many unique challenges like variations in size, colour,
orientation and position of leaves and they also appear in large
numbers as compare to stems. In this section, we discuss in detail
our approach for these two key tasks.

3.1 Tree Structure Generation
Regarding the first task, we propose a grammar-based approach
to model tree stem structures. This approach can be viewed as an
automata, which consists of one start state S, a set of stop states
T and multiple transient states. Each state transition draws a stem
as a spline and is controlled by a grammar G and the geometry H
associated with the grammar. Additionally, each of these transitions
from one state to another state of the automata is stochastic in na-
ture and thus can lead to one of the many next states defined as part
of the grammar. This enables modelling the structural variations
associated with specific tree species. Another important aspect of
modelling structural variations is associated with geometrical rules
defining the geometry of the stem to be drawn for that transition.
Each geometric rule also has random variations within it to further
increase the stochasticity within the species and also across species.
This is by providing parameters such as length or angle as uniform
random variables rather than a constant. Figure 3 shows how varia-
tions in grammar and geometry specification produce variations in
trees. More specifically, trees in Figure 3a and Figure 3b share the
same grammar and geometry, the variation produced are purely
due to stochasticity in grammar and geometry. On the other hand,
trees shown in Figure 3a and Figure 3c share the same grammar but

have different geometries. This is shown in their similar underlying
structure. Finally, trees rendered in Figure 3a and Figure 3d have
different grammar as well as different geometry. In the current
approach, the stems that are generated are assumed to be devoid of
self-intersecting properties and is not explicitly modelled.

3.1.1 Grammar (G).
Grammar describes the underlying structure of the tree. It holds
structural information such as the number of stems a stem splits
into, which can be stochastic. A grammar G is defined as a set of
state transition rules, i.e., G = {𝑔1, 𝑔2, 𝑔3, . . .} with each transition
rule 𝑔𝑖 defining the probabilities (or likelihood) of choosing the next
(output) set of states starting from current (input) state. Therefore,
each element of G defines a stochastic input-output rule system
where the input is a single state 𝛼 and output can be a set of states
e.g., {𝛽,𝛾, 𝛿, . . .}. This means that a single input state can transition
into multiple output states. This is necessary for modelling trees
and can be thought of as a single stem splitting into a set of multiple
child stems in a stochastic manner.

Interestingly, during such transitions from input to output states,
each transition 𝛼 → 𝛽 and 𝛼 → 𝛾 has a different set of geometries
associated with them. Nevertheless, even if input and output states
are the same, the stems will still be different due to stochasticity in
the geometrical parameters as explained below. Some examples of
tree specific grammars are provided in table 1.

Another important parameter associated with the expansion
of grammar is the maximum branching depth D. It can also be
thought of as the maximum recursion depth. More specifically, it
controls how many levels of branching the tree can have. Thus,
it is used to control the size of the tree and hence consequently
limits the resource usage of the computer by not letting the code
run indefinitely in case the stop state is not encountered.

3.1.2 Geometry (H ).
Each tree has a set of geometric rules where each rule ℎ𝑖 ∈ H is
associated with a every single state transition in the grammar G.
Each of these geometric rules has intuitive and simple parameters
listed here:

• Base Angle is specified as 3 uniform random variables rep-
resenting the 3 Euler angles. The range of these variables is
specified by the user. The angle gives the relative change of
orientation of the child stem with respect to its parent which
is further modified to give the true angle.

• Reduce angle is used to reduce the range of angles a stem
can make from its parent. It is observed that the stems that
are higher up in a tree tend to make smaller angles from
their parent stem than those lower. This may be attributed
to external factors such as gravity which over time increases
the angle between parent and child stem. It is specified as
a vector containing the reduction for the 3 Euler angles.
Reduce angle 𝑟𝑎 modifies the base angle 𝑏𝑎 to give the true
angle 𝑡𝑎 as a function of the current branching level 𝑐 , given
by relation 𝑡𝑎 = 𝑏𝑎 × 𝑟𝑐𝑎 .

• Base length of the stem is specified as a uniform random
variable. This gives a relative measure of the length of the



ICVGIP’21, December 2021, Jodhpur, India A.Jain et al.

(a) Pine (b) Pine (c) Aspen (d) Guava

Figure 3: Variations in grammar and geometry produce variations in trees structure.

Table 1: Condensed grammar for selected trees. Grammar is given as 𝑖𝑛𝑝𝑢𝑡 → 𝑜𝑢𝑡𝑝𝑢𝑡 , with 𝑠 always representing the start state
and 𝑡 end state where applicable. For the case of Guava, we can see that the grammar has two elements. For the second element,
𝑎 can transition into 𝑎𝑎𝑎 or 𝑎𝑎, which can go on recursively. Each transition 𝑎 → 𝑎 has a geometry associated with it.

Tree Grammar

Guava 𝑠 → (𝑎);𝑎 → (𝑎𝑎𝑎/𝑎𝑎)
Fir 𝑠 → (𝑎);𝑎 → (𝑎𝑏1𝑏1𝑏2𝑏2/𝑎𝑏1𝑏1𝑏2/𝑎𝑏1𝑏1𝑏1);𝑏1 → (𝑡);𝑏2 → (𝑐1𝑐2); 𝑐1 → (𝑡); 𝑐2 → (𝑡)
Palm 𝑠 → (𝑎);𝑎 → (𝑏𝑏 . . . 𝑏);𝑏 → (𝑡)
Bamboo 𝑠 → (𝑎𝑎 . . . 𝑎);𝑎 → (𝑎)

stem associated with the state transition. The true length of
the stem is dependent on the base length as given below.

• Reduce length is specified as a scalar and it modifies the
base length. True length of the stem 𝑡𝑙 , is a function of the
base length 𝑏𝑙 , reduce length 𝑟𝑙 and the current branching
level 𝑐 given by the relation 𝑡𝑙 = 𝑏𝑙 × 𝑟𝑐

𝑙
. This gives an ap-

proximation of stem length as stem length reduces at higher
branching levels of the tree.

• Reduce width begin (𝑟𝑤𝑏 ) and reduce width end (𝑟𝑤𝑒 )
are specified as scalars. They control the widths of the end-
points of the stem and interpolate the intermediate control
point widths based on the endpoint widths. Let 𝑤 be the
width of the adjoining endpoint of the parent stem, then the
widths of the endpoints of the child stem will be 𝑤 × 𝑟𝑤𝑏
and𝑤 × 𝑟𝑤𝑒 . Additional global parameterW represents the
initial width of the base stem i.e., the trunk of the tree. It is a
uniform random variable between ranges provided by the
user. This rule assumes that the width of the child stem will
always be less than or equal to its parent stem. This is true
in most situations and should be a good approximation for
modelling trees.

• Curve is a uniform random variable that specifies the curvi-
ness of the stem. Noise functions like Perlin noise can be
used. The noise vector displaces the control points of the
spline by an amount proportional to the curve parameter.
This helps make the tree more realistic by adding noise at
the structural level. Models using cylinders instead of splines
for drawing stems cannot use this parameter.

3.2 Populating Leaves
The key challenge associated withmodelling leaves is dealing with a
large system of geometry. To tackle this issue, particle systems [10]
have been a popular approach in the past. Particles are pieces of
geometry emitted from mesh objects, typically in the thousands.
Each particle can be a point of light or a mesh, and be joined or
dynamic. They may react to many different influences and forces,
and have the notion of a lifespan. Particle systems once created are
a placeholder for the particle geometry to be placed.

We have adopted the particle system approach to model foliage
unique to each tree in terms of leaf type and variations seen based
on season, height and orientation. In this approach, we use hair
type particles [1] which are a subset of regular particles. Hair sys-
tems form curves that can represent hair and fur in addition to
leaves. The simulation and modelling of human hair is a process
whose computational complexity is very large, this is due to the
large number of factors that must be calculated to give a realistic
appearance. Generally, the method used in the film industry to
simulate hair is based on particle handling graphics. In this paper,
a simpler approximation of modelling hair type particles provided
in Blender [17] is used. This approach towards modelling hair type
particles is a common one in the field of computer graphics.

We create a ParticleSystem in the Blender, an object parameter-
ized to control the appearance and behaviour of individual Particle
objects over time. Particles, which are born from a ParticleEmitter,
have a position and type. The primary approach we take to affect
the visual output is to include maximum and minimum attributes.
For every variable with a maximum and minimum input, the actual
value for that variable on the particle will be randomly assigned to



Automated Tree Generation Using Grammar & Particle System ICVGIP’21, December 2021, Jodhpur, India

(a) timestep 1 (b) timestep 2 (c) timestep 3 (d) timestep 4

Figure 4: The growth stages of trees. This is achieved by controlling the maximum branching depth of the tree.

be between the maximum and minimum input and stay statically
at that value for the entire life of the particle.

When we transition from an input state to output states, then
each transition has a different set of geometries associated with
them. With each execution of expanding the grammar, leaves are
generated as particle system for the spline. The particles system
takes as input the appropriate leaf texture and distributes the leaves
onto the spline that is in consideration.

Leaves are represented as planes. Leaf texture is specified as
an image of the leaf. Different species have different vernacular
patterns that can be specified most accurately using images of real
leaves. Colour variations are observed that the stems that are higher
up in a tree tend to dry out faster than the ones below. Hence the
provision for multiple textures to be supplied to the tree is available.
The lighter textures are seen on the higher branches and vice versa.
This is achieved by calling upon the lighter textures for the particle
systems on the top branches, a mix of lighter and darker textures
on the intermediate branches and darker textures on the lower
branches.

The leaves are placed at different rotation angles within a user
set range. A randomness value ensures that different values are
chosen within that range. The leaves are placed along the tangent
to the spline. It is observed that the stems that are higher up in a
tree tend to have smaller newer leaves whereas the lower branches
have larger older leaves. Hence, the leaves are scaled to different
sizes within a user set range. A randomness value ensures that
different values are chosen within that range.

4 RESULTS
We were able to generate trees of high diversity using the proposed
method. This includes various western tree species (like Aspen, Fir,
Maple, Pine, etc.) as well as Indian tree species (like Tulsi, Banyan,
Mango, Neem, Gulmohar, Kadamb, Sal, Ashoka, Peepal, etc.) that
are shown in Figures 9 and 10. The dataset including multiple
instances of various tree species as listed in Table 2 is available at
our website1.

Additionally, our method allows adding new species or updating
the grammar for existing species with minimal user editing. The

1https://cvit.iiit.ac.in/research/projects/cvit-projects/automated-tree-generation-
using-grammar-particle-system/

code for our method as a Blender package, an user-friendly interface
based automated tree generation, as shown in Figure 7 is available
at our website.

Ourmethod can produce good variation in tree structures, within
and across species, due to the stochastic nature of grammar and
geometries as shown in Figure 3. In addition, our method can also
be used to generate the growth pattern of a given tree species, as
shown in Figure 4.

In regard to comparison with other relevant state-of-the-art
methods, we were able to overcome shortcomings of most relevant
work in [16] by proposing the usage of local rather than global
parameters, which allowed us to model a much wider range of
species. This is demonstrated by generating a Pine tree as shown
in Figure 8 where our method generates a more realistic tree as
compared to the method from [16].

Regarding modelling of leaves, Figure 5 shows variations across
seasons as depicted with colours of leaves in the maple tree. Simi-
larly, variation in leaf appearance, size and density across seasons
is shown in Figure 6. Video results in our website shows the move-
ment of leaves and trunks owing to external factors like strong
wind currents which were produced by attaching armatures to the
leaves and trunk and then animating it. We can also model addi-
tional geometrical objects like fruits, flowers by using the Particle
System based approach, as shown for Mango Tree in Figure 10(d).

The time to produce a single tree using our method ranged
between approximately 10ms for trees with simple open structures
like Sal to approximately 3000ms for complex and dense trees like
Banayan.

5 CONCLUSION & FUTUREWORK
We propose a novel grammar based approach for generating wide
variety of tree species. The proposed grammar is easy to understand
and can be edited by a novice user which overcomes the complexi-
ties of parametric models. The proposed method also gives higher
control to the user by setting the geometries locally. Our method
is scalable due to its inherent stochasticity to produce structurally
varying trees.

Some straightforward extensions of this model can be to incor-
porate the features such as those proposed in [19] like pruning,
wind sway, vertical attraction and tropism, degradation at range.



ICVGIP’21, December 2021, Jodhpur, India A.Jain et al.

(a) Green leaves (b) Red leaves (c) Yellow leaves

Figure 5: The variation in leaves color across seasons for maple tree.

Figure 6: Different stages of tree foliage across seasons.

Figure 7: Snapshot of our Blender add-on for easy and intu-
itive user editing.

Table 2: A list of tree species and number of trees for each
species in our generated dataset.

Tree Sample Tree Sample
Ashoka 1000 Lemon 1000
Aspen 1000 Mango 500
Bakul 800 Maple 500
Bamboo 2000 Neem 1500
Banyan 400 Palm 2000
Coconut 1500 Peepal 400
Fir 1000 Pine 1000
Guava 1500 Sal 1500
Gulmohar 500 Shrub 800
Kadamb 1000 Tulsi 800

(a) Result of Sun et al. [16] (b) Result of our method

Figure 8: Qualitative comparison with [16]. (a) Keeping sin-
gle global parameters for all kinds of curves [16] fails in the
case of pine. (b) The proposed model specify separate local
parameters for different types of curves to successfully gen-
erate a realistic Pine tree.

There is also a need to propose a good metric for formal compari-
son between various tree generation algorithms, which currently
does not exist. Further its scalability for generation of vast forest
stretches may need some optimisation. Learning-based approaches
such as inverse procedural modelling can be integrated with this
model to regress to real-world trees.



Automated Tree Generation Using Grammar & Particle System ICVGIP’21, December 2021, Jodhpur, India

(a) Aspen (b) Bamboo

(c) Fir (d) Guava

(e) Maple (f) Palm

(g) Pine (h) Shrub

Figure 9: A subset of trees found in the western world created using the proposed model.



ICVGIP’21, December 2021, Jodhpur, India A.Jain et al.

(a) Ashoka (b) Banyan

(c) Kadamb (d) Mango

(e) Neem (f) Peepal

(g) Sal (h) Tulsi

Figure 10: A subset of trees found in the tropical Indian subcontinent generated using the proposed model.



Automated Tree Generation Using Grammar & Particle System ICVGIP’21, December 2021, Jodhpur, India

REFERENCES
[1] Jesús Antonio Alvarez-Cedillo, Roberto Almanza-Nieto, and Juan Carlos Herrera-

Lozada. 2010. Three dimensional hair model by means particles using Blender.
3D Research 1, 3 (2010), 1–5.

[2] Oscar Argudo, Carlos Andújar, and Antoni Chica. 2020. Image-Based Tree
Variations. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 174–184.

[3] Oliver Deussen, Pat Hanrahan, Bernd Lintermann, Radomír Měch, Matt Pharr,
and Przemyslaw Prusinkiewicz. 1998. Realistic modeling and rendering of plant
ecosystems. In Proceedings of the 25th annual conference on Computer graphics
and interactive techniques. 275–286.

[4] Feng Han and Song-Chun Zhu. 2003. Bayesian reconstruction of 3d shapes and
scenes from a single image. In First IEEE International Workshop on Higher-Level
Knowledge in 3D Modeling and Motion Analysis, 2003. HLK 2003. IEEE, 12–20.

[5] Julian Kenwood, James Gain, and Patrick Marais. 2014. Efficient Procedural
Generation of Forests. (2014).

[6] Jinmo Kim. 2016. Modeling and optimization of a tree based on virtual reality
for immersive virtual landscape generation. Symmetry 8, 9 (2016), 93.

[7] Aristid Lindenmayer. 1968. Mathematical models for cellular interactions in
development II. Simple and branching filaments with two-sided inputs. Journal
of Theoretical Biology 18, 3 (1968), 300–315. https://doi.org/10.1016/0022-5193(68)
90080-5

[8] Steven Longay, Adam Runions, Frédéric Boudon, and Przemyslaw Prusinkiewicz.
2012. TreeSketch: Interactive Procedural Modeling of Trees on a Tablet.. In
SBIM@ Expressive. Citeseer, 107–120.

[9] Long Quan, Ping Tan, Gang Zeng, Lu Yuan, Jingdong Wang, and Sing Bing Kang.
2006. Image-based plant modeling. In ACM SIGGRAPH 2006 Papers. 599–604.

[10] William T Reeves. 1983. Particle systems—a technique for modeling a class of
fuzzy objects. ACM Transactions On Graphics (TOG) 2, 2 (1983), 91–108.

[11] Daniel Ritchie, Ben Mildenhall, Noah D Goodman, and Pat Hanrahan. 2015. Con-
trolling procedural modeling programs with stochastically-ordered sequential

monte carlo. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–11.
[12] Tatsumi Sakaguchi. 1998. Botanical tree structure modeling based on real image

set. In ACM SIGGRAPH 98 Conference abstracts and applications. 272.
[13] Ilya Shlyakhter, Max Rozenoer, Julie Dorsey, and Seth Teller. 2001. Reconstructing

3D tree models from instrumented photographs. IEEE Computer Graphics and
Applications 21, 3 (2001), 53–61.

[14] Ondrej Št’ava, Bedrich Beneš, Radomir Měch, Daniel G Aliaga, and Peter Krištof.
2010. Inverse procedural modeling by automatic generation of L-systems. In
Computer Graphics Forum, Vol. 29. Wiley Online Library, 665–674.

[15] Ondrej Stava, Sören Pirk, Julian Kratt, Baoquan Chen, Radomír Měch, Oliver
Deussen, and Bedrich Benes. 2014. Inverse procedural modelling of trees. In
Computer Graphics Forum, Vol. 33. Wiley Online Library, 118–131.

[16] Ruoxi Sun, Jinyuan Jia, and Marc Jaeger. 2009. Intelligent tree modeling based on
L-system. In 2009 IEEE 10th International Conference on Computer-Aided Industrial
Design & Conceptual Design. IEEE, 1096–1100.

[17] Tuukka M Takala, Meeri Mäkäräinen, and Perttu Hämäläinen. 2013. Immersive
3D modeling with Blender and off-the-shelf hardware. In 2013 IEEE Symposium
on 3D User Interfaces (3DUI). IEEE, 191–192.

[18] Ping Tan, Gang Zeng, Jingdong Wang, Sing Bing Kang, and Long Quan. 2007.
Image-based tree modeling. In ACM SIGGRAPH 2007 papers. 87–es.

[19] Jason Weber and Joseph Penn. 1995. Creation and rendering of realistic trees. In
Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques. 119–128.

[20] Ke Xie, Feilong Yan, Andrei Sharf, Oliver Deussen, Hui Huang, and Baoquan
Chen. 2015. Tree modeling with real tree-parts examples. IEEE transactions on
visualization and computer graphics 22, 12 (2015), 2608–2618.

[21] Mehmet Ersin Yumer, Paul Asente, Radomir Mech, and Levent Burak Kara. 2015.
Procedural modeling using autoencoder networks. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology. 109–118.

https://doi.org/10.1016/0022-5193(68)90080-5
https://doi.org/10.1016/0022-5193(68)90080-5

	Abstract
	1 Introduction
	2 Literature Survey
	3 Tree Generation
	3.1 Tree Structure Generation
	3.2 Populating Leaves

	4 Results
	5 Conclusion & Future Work
	References

